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ABSTRACT

The treatment of the motion of deformable bodies requires a specifica-
tion of axes for each shape. We present a natural kinematic formulation of
this problem in terms of a gauge structure over the space of shapes that the
body may assume. As an example, we discuss how deformations of a body
with angular momentum zero can result in a change in orientation.

1. Introduction

Gauge potentials figure prominently in the formulation of fundamental
physical laws. The abstractness of these laws, however, does not easily lend
itself to an intuitive understanding of the concepts involved. Here we argue
that gauge potentials arise naturally in a much more mundane, but in return
more readily visualized, context-—the description of the motion of deformable
bodies. We hope that our exposition will provide both an introduction to
some of the basic concepts of gauge theories and a useful framework for
discussing the kinematics of deformable bodies.

A cat, held upside-down by its feet and released at rest from a suitable
height, will almost always manage to land on its feet [1] {2]. A diver leav-
ing the board with no angular momentum may perform several twists and
somersaults before hitting the water [3| [4]. In both cases, by executing a
sequence of deformations beginning and ending at the same shape, a de-
formable body with nothing to push against and no angular momentum has
undergone a net rotation.
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In this note, we will present a convenient and natural context for com-
puting the net rotation of a body, in the absence of external forces and
torques, due to a given sequence of deformations. Our starting point is the
observation that such rotations have no dependence on the rate at which
the deformations are made—the equations governing the motion are invari-
ant under time reparameterizations. Only the geometry of the sequence of
deformations matters. We shall show that the rotation of a self-deforming
body may be naturally expressed in a purely geometric form, in terms of a
gauge potentlal over configuration space.

A similar kinematic framework was devised recently for the description
of another problem involving deformable bodies: swimming at low Reynolds
number [5]. In that case, calculation of the gauge potential required the
solution of a highly non-trivial hydrodynamic problem, while here we shall
be able to write the complete solution in a simple, closed form.

The configuration space of a deformable body is the space of all possible
shapes [5]. We should at the outset distinguish between the space of shapes
located somewhere in space and the more abstract space of unlocated shapes.
The latter space may be obtained from the space of shapes cum locations
by declaring two shapes with different centers-of-mass and orientations to
be equivalent. When no external forces act upon a deformable body, then
we may always work in its center-of-mass {rame, in which case the space of
located shapes is just the space of shapes with orientation and centered at
the origin.

The problem we wish to solve may be stated as follows: what is the
net rotation which results when a deformable body goes through a given
sequence of unoriented shapes, in the absence of external forces? In other
words, given a path in the space of unlocated shapes, what is the corre-
sponding path in the space of located shapes? The problem is intuitively
well-defined—if a body changes its shape in some way, a net rotation is in-
duced. This net rotation may be computed by making use of the law of
conservation of angular momentum. Thus, if the body begins with some
angular momentum L, then it will adjust its orientation in such a way as to
preserve L. In general, this constraint is enough to determine fully the net
rotation of the body.

These remarks may seem straightforward enough, but if we attempt to
formulate them mathematically, we immediately run into a crucial ambi-
guity. Namely, how can we specify the net rotation of an object which is
continuously changing its shape? The situation is illustrated in Fig. 1—in
order to talk about the relative orientations of two shapes, we must choose a
set of body-fixed axes for each. It would seem that for the problem at hand,
there is a natural choice of axes for an arbitrary shape-—its three moments
of inertia. But even this choice is ambiguous: we must siill specify which
moments correspond to body-fixed z—, y—, and z-axes. One could then
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say that the z—axis is always the longest and the z--axis the shortest, but
this choice becomes singular when two or more moments become degenecrate,
and the choice of axes for the sphere remains completely ambiguous.

Figure 1. In order to measure the relative orientation of two different
shapes, a choice of axes for each shape must be made.

Of course, we should not be too disoriented by this ambiguity, since
whatever choice of axes we make, the problem still must have a solution.
The distinction between particular choices is really no more than a matter
of convenience,

We are faced with an enormous degeneracy of possible kinematic de-
scriptions: at each point in an infinite-dimensional shape space, we must
pick a set of reference axes from a space which looks like SO(3). In the
following section, we shall develop a formalism which works for any choice
of axes, and which makes it easy to translate between different choices. The
formalism is based on a gauge structure over shape space, and involves a
construction known as a non-Abelian gauge potential. Although physicists
first used gauge structures in the context of elementary particle theory, they
have been shown to arise naturally in many other areas of physics and math-
ematics [5-9] . The present problem provides a further illustration of this
universal concept. -

2. Kinematics

Let us suppose that we have chosen a set of standard body-fixed refer-
ences axes for each possible unoriented shape. Then every unoriented shape
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is assoclated to a standard oriented shape, whose z—, y—, and z—axes co-
incide with our choice of standard reference axes for the shape. For a given
sequence of these standard shapes Sy(t), we wish to find the corresponding
sequence of physically oriented shapes 5(t}, which are related by rotations
R(t):

S{t) = R{t) So(t) (2.1)

R(t) is a 3 x 3 rotation matrix which depends, in general, on the choice of
reference axes for S¢. Indeed, if we make a local change ir our standard

shapes N
So = Q[So] So (2.2)

then the physical shapes S(t) must be unchanged, so
f(t) ~ R() 271 [So(1) (2.3)

We shall compute R{t) infinitesimally, and integrate to get the net ro-

tation at finite times. We define

dR dR

— =R|R'="| =RA 2.4

dt [ dt } (2:4)
A gives the infinitesimal rotation which results from the infinitesimal defor-
mation of Sy(¢). We shall see presently that A is uniquely determined by the
shape change. Once A is known, the full rotation at time ¢ may be expressed
as a path-ordered exponential

R{t) = P exp /:A(t’) di’

= 1+f A(t')dt'—i—/ /A(t')A(t”)dt'dt""—'--- (2.5)
o<t <t Bttt <t

where the P indicates that in expanding the exponential integral, all matrices
are to be ordered with later times on the right. (For simplicity, we have taken
R{(0)=1.)

The expression (2.5) is actually invariant under arbitrary time rescalings.
Under t — 7(t), the measure scales as dt — 7dt, while A — A/7 since A
contains one time derivative. This suggests that we should be able to write
Eq. (2.5) in a completely geometric (i.e., time-independent) form. In fact,
we can define a gauge polential (or connection, to mathematicians) over the
space of standard shapes Sy, which we shall also denote as A, by

Ag, [Sot)] = A(1) (2.6)

This definition requires some explanation. A is defined on the tangent space
to Sg—that is, it is a vector field with a component for every direction of
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shape space —and it takes its values in the Lie algebra of infinitesimal SO(3)
rotations. In Eq.(2.6), A is evaluated at a particular shape Sp(t), in the
direction Sp in which the shape is changing. Thus, for a given infinitesimal
deformation of Sy by 65, the resulting net rotation of the shape is As5[Sp]. In
terms of a fixed basis of tangent vectors {w;} at Sp, we can define components
Ai[SU] = Am‘ [SD]

Now for a given path in shape space, the integration in (2.5} may be
performed without referring to a time coordinate:

3 Solt)
R{t)=P expf A[Soi- dSg (2.7)

Multiplying this equation on the right by @ 1[Sp(t)| and differentiating in
the w; direction shows that under the “gauge” transformation (2.2}, (2.3),
A transforms as a non-Abelian gauge potential should:

A — QAN V0! (2.8)

H one is only interested in rotations resulting from cyclic infinitesimal
deformations of a shape Sy, then an approximate evaluation of the path-
ordered exponential in Eq. (2.7) is possible. In the expansion of Eq. (2.5),
each successive term will be down by a power of ¢, where ¢ characterizes the
size of the deformations. The first order term will vanish for a closed cycle,
and the second order term may be written as an expression quadratic in 4
and linear in the first derivatives of A. It is this term we shall now compute.

Let the standard shapes near Sp be parametrized by

Se(t) = S + s(t) (2.9)

where the s(t) are infinitesimal, of order e. We expand s(t) in terms of a
basis of tangent vectors at Sy:

s(t) = ) aiftywi (2.10)
Then the velocity in shape space is:
So(t) = éyw; (2.11)
i
Now let us expand the gauge potentials to second order:

04g,
Ag [So+s(t)] 2 A5 [So] + ) 3o, G

A 0A; .
=3 (Ajaj +y a—bﬁaia,-) (2.12)
j i i
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In the path ordered exponential integral (2.5) around a closed cycle, the
first order term in (2.12) gives no contribution, for it is a total derivative.
The second order contributions are terms quadratic in A and linear in its
derivatives. Because (2.5) is gauge covariant for a cyclic path, its Taylor
expansion in powers of s(¢) must also be gauge covariant, order by order. In
fact, there is a unique (up to normalization) second order gauge covariant
term we can form, which is antisymmetric in its indices 7 and 7:

d4; 94,

Fij = a}: - é;)-;-- + [Ag': Aj] (2.13)

(Antisymometry of Fj; means that the reverse cycle leads to the reverse ro-
tation.) We shall call F the field strength tensor (or curvature) at Sp. It is
easily verified that expansion of Eq. (2.5) to second order gives

P expj{ Adi=1+ %%ZF,-J,- ayéy dt (2.14)
%)

The field strength tensor, evaluated at a shape Sy, encodes all information
on rotations due to arbitrary infinitesimal deformations of Sy,

3. Dynamics: Computing the Gauge Potential

The dynamics of a free self-deforming body is completely determined
by the law of angular momentum conservation. The gauge potential A, In
turn, completely describes the dynamics. In this section, we derive a general
expression for A, for a body with angular momentum zero.

Let us consider a body which is a collection of point masses m(™ at z{).
Then the total angular momentum of the body is

Li = €k Z m(”} Ign)ILn) . (31)

where the sums over repeated indices are implicit and all indices run from 1
to 3. Now to each possible configuration of the z!")’ is associated a unique
standardly oriented configuration #("). At time t, the two configurations are

related by a rotation:
(1) = R()z™(¢) (3.2)

Thus, expressed in terms of #(™ and R(t), the total angular momentum is

(r)

L,‘ = €ijk Z m{”) [Rﬂi}n] kai'm + Rjgf}n] kai"g:)} (3.3)
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To find the gauge potential A(f) = R 'R, we set L; = 0 and solve. The
result, after a few lines of algebra, is

Alt)ij = (B R)yy = el Iy (3.4)

where I is the inertia tensor of the standardly oriented shape Sy(t} and Lis
the apparent angular momentum of Sp(t) at time &

EJ_ = Z min ((i(n))zéij - %z(n)%gn)) (3.5)
R ST o

The formulae (2.5) and (3.4) in principle provide a complete, and rather
elegant, solution to the problem of computing net rotations of a deformable
body. Often, however, it is easier to compute the gauge potential directly,
as we shall now do for a simple example.

4. An Example

We now consider the example of two concentric spheres rotating about
their common center of mass, as depicted in Fig. 2. The space of possible
orientations for each sphere is SO(3) (familiarly parameterized by Euler
angles), and the full configuration space of the system is § = S0(3)x50(3).
The space Sy of standard shapes may he thought of as the space of relative
orientations of the two spheres; it, too, is isomorphic to SO(3). We shall
choose as standard shapes those configurations in which the outer sphere is
in a fixed orientation, say, with the north pole pointing in the direction of
the positive z-axis and the ¢ = 0 meridian in the zz-plane.

We can easily write down the gauge potential at an arbitrary point in
Sp up to proportionality. Indeed, any rotation of the inner sphere relative to
the outer must be compensated by an opposing rotation of the outer sphere,
in order to conserve angular momentum. In the particular basis of standard
shapes we have chosen, this rotation of the outer sphere is equal to the pet
rotation of the system. So, letting J; be the three generators of relative
rotations, the net rotation due to an infinitesimal change of shape {1 = w;J;

is
A=—-al} (4.1)

where « is a proportionality constant between 0 and 1. Whereas the relative
orientation of the two spheres at time ¢ is

Ry(t) = P exp /t n(t') ' (4.2)
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Figure 2. A body conststing of two spheres rotating about a common
center of mass. Shapes are labeled by the angle  between their polar axes.

the net rotation of the system is

R(t) =P exp ~ a/t Q') dt’ (4.3)

Now, even if Ro(T) = 1, there is no reason for E(T') to be trivial. Thus
by purely internal rearrangements, even with nothing to push against, our
system can reorient itself,

We may evaluate the path ordered exponential for infinitesimal closed
paths (and thus the field strength) by a simple argument. Suppose we rotate
the outer sphere about the r-axis and the y-axis successively, by an angle ¢,
and then about the r-axis and the y-axis by —e. Finally, we close the path
in shape space with a rotation about the z-axis by —¢. We come back to
the same shape we started at because of the general properties of rotations,
as expressed by the equation

.2 . . . )
e it J,e iedy e ted, eze.]!, &€z — 1 (4-4)

true to order ¢*. According to Eq. (4.1), the net change in orientation of the
inner sphere 1s

el ; ; _3 . o212
toe gz ezaely emzere iy e iaxed: ei(a at}e?J, (4.5)

The net rotation is €2(er — o) about the z—axis and the field strength F,,
is (@ — o®)J,. More generally, by rotational invariance, the field strength at
any point in shape space is

FiJ' = (o‘ - az)fijk-]k (4.6)
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Thus, the field strength is a monopole field [6]{9] of strength o — o, located
at the origin of the tangent plane at a point of shape space. Note that for
o = 0 or 1, F,,, vanishes, as it should. Furthermore, the net rotation is
maximized when o = §. An easy calculation will reveal that o = I/{I+I'),
where f and I’ are the moments of inertia of the two spheres, so that o = %

when I = [
To find o, we begin with the equation for the angular momentum:

L=I18+1'¢ =0 (4.7)

where @ and & are the physical orientations of the two spheres in the plane of
rotation. If §' refers to the outer sphere, then the specification of a sequence
of standard shapes means that we know # — @ at all times. From this
information, it is easy to obtain g' (t):

) I
I 7 ST
8 = T (6 — 8" (4.8)
Comparing with Eq. (4.1) gives
I
= 4.9
CTIvr (4.9)

Note that « is always between 0 and 1, as claimed previously.

The foregoing example is readily generalized to more complicated situ-
ations. For instance, if we vary the moments of inertia of the spheres with
time, the only modification of the above calculation that needs to be made
is to bring e under the integral sign in Eq. (4.3):

R(t) =P exp — /t et )02t dt’ (4.10)

Even the most general case of two bodies with arbitrary time-dependent
inertia tensors rotating about a common center or mass is hardly any more
difficult to write down:

R(t) =P exp — /t(f + I’)‘lfﬁ(t') dt' (4.11)

For two bodies whose centers of mass do not coincide, the solution is
more involved. In [3], the rotation of a simple system consisting of two rods
joined at a hinge is solved in closed form, with overall orientation expressed
as a function of the hinge angle. That result generalizes readily to more
complicated systems—we leave it to the interested reader to work out the
details.
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5. Remarks

As we mentioned in the introduction, there are a variety of contexts
where one might wish to find the net rotation of a self-deforming body. The
diverse catalog of such bodies includes divers performing multiple twists [37,
cats in free fall [1]{2], and astronauts and satellites in space '10;. By way of
example, we shall briefly consider the application of our ideas to satellites.

There are two primary means of changing the orientation of a satellite—
propulsive and mechanical. The former relies on external thrusters to impart
an angular momentum to the satellite, which is cancelled by a reverse thrust
when the desired orientation is reached. This method has the disadvantage
of requiring the initial and final thrusts to be precisely equal and opposite,
a problem not shared by the second method, which falls under the general
category of rotation by self-deformation. One might implement it, for exam-
ple, by mounting two perpendicular flywheels near the center of the satellite.
The flywheels would be used to generate rotations about the body’s z- and
y-axes. (A rotation about the z-axis could be generated by a sequence of
z and y rotations.} The caleulation of Sec. 4 may be taken over almost di-
rectly, if the flywheels are constructed so that they share a common center
of mass with the rest of the satellite. Otherwise, the calculation may be
modified in accord with the remarks at the end of Section 4. Note that no
matter how the mechanical approach is implemented, the body’s initial and
final angular momentum are guaranteed to be the same.

Once the net rotation of a body due to any sequence of deformations
is known, it is natural to try to optimize. Thus we ask, what is the most
efficient way for a body to change its orientation? The answer will depend
on many factors, including the definition of efficiency and constraints on the
space of possible shapes. If one considers only infinitesimal deformations of
a particular shape Sy, then the methods of [11] may be applied. However,
large deformations are trickier, due to the path ordering in Eqg. (2.5). The
following qualitative observations bring out the subtleties of this problem.
First, it is necessary to take account of non-contractible paths in shape space
(e-g., rotation of a wheel by 27). Also in considering large deformations,
one might expect that one could increase efficiency, by first deforming to a
region of shape space with high curvature (large F..) and then performing
small changes of shape. Where the curvature is large, a little bit of internal
motion generates a large motion through space. Conversely, where there
is small curvature even large internal motions generate only small motions
through space. Hence large curvature configurations are appropriate when
one wants to generate gross motions most efficiently, whereas small curvature
configurations are appropriate to insure noise immunity for fine motions.
This is a design principle that is intuitively evident and quantifiable once the
language is understood, but might otherwise be difficult te express. Actual
calculations along these lines would be illuminating.
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